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ABSTRACT

Background and Methods: Non-small cell lung cancer (NSCLC) outcomes have improved remarkably with the widespread
use of immune checkpoint inhibitors and small molecule inhibitors targeting driver mutations. Nevertheless, many patients
continue to experience suboptimal outcomes. The prevalence of mutations in the BAF (BRG1/BRM-associated factor) chromatin
remodeling complexes may represent an opportunity to help close this gap: These critical regulators of chromatin accessibility
are mutated in approximately a quarter of NSCLC cases, and numerous retrospective reports have evaluated the impact of these
mutations on clinical outcomes. Here, we appraise the varying and occasionally divergent evidence for BAF complex mutations
as predictive and prognostic biomarkers in NSCLC.

Results: We conclude that these mutations hold promise as refinements to existing prognostic and treatment algorithms, with
SMARCA4 mutations imparting poor prognosis, ARIDIA mutations predicting better prognosis with immune checkpoint in-
hibitor therapy, and ARIDIA-epithelial growth factor receptor (EGFR) comutations being associated with insensitivity to EGFR
tyrosine kinase inhibitor therapy. Additional research should focus on large, prospective studies that will allow better quantifi-
cation of the impact of BAF complex mutations.

Conclusions: A growing body of evidence indicates that BAF complex mutations have important prognostic implications. These

may be leveraged for risk stratification and therapeutic selection in patients with non-small cell lung cancer.

1 | Introduction

The BAF (BRG1/BRM-associated factor) complexes, also known
as the SWI/SNF (SWltch/Sucrose Non-Fermentable) complexes,
are evolutionarily conserved multisubunit adenosine triphos-
phate (ATP)-dependent chromatin remodeling complexes.
Three distinct BAF complexes have been identified, namely
canonical BAF (cBAF), polybromo-associated BAF (pBAF),
and non-canonical BAF (ncBAF), which contain shared sub-
units and complex-specific subunits that are combined in a tis-
sue- and function-specific manner [1]. The mutually exclusive
ATP-dependent helicases SMARCA2 and SMARCA4 (SWI/
SNF-related BAF chromatin remodeling complex subunit
ATPase 2 and 4, also known as BRM and BRG], respectively)

form the core of every BAF complex, and the energy they gen-
erate via ATP hydrolysis allows BAF complexes to slide or evict
nucleosomes along the DNA [1]. Multiple core and accessory
subunits facilitate the binding of the complex at sequence-
specific locations, allowing sequence-specific transcription fac-
tors and transcriptional machinery to access gene regulatory
elements and control gene expression. These interactions play
a key role in cellular differentiation, DNA repair, and cell cycle
progression, which are critical in maintaining the pluripotency
of stem cells and regulating organ development [1-3].

The rich combinatorial diversity and tissue/cell type-specific
expression of BAF subunits is likely responsible for determining
which BAF complexes interact with which transcription factors,
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where chromatin is remodeled, and possibly why certain mu-
tated subunits are markedly associated with specific tumor
types [4-8]. The genes encoding subunits of the BAF complex
are some of the most frequently mutated in cancer, with approxi-
mately 20% of all human cancers harboring mutations in at least
one BAF subunit gene, including in highly prevalent cancers
such as non-small cell lung cancer (NSCLC) [9-11].

The impact of different BAF mutations on BAF complex assem-
bly and function varies significantly depending on whether the
mutation leads to complete or partial loss of protein expression
and which subunit is mutated. Thus, the impact of different
BAF mutations on chromatin remodeling and transcriptional
regulation varies widely. This is best illustrated by the fact that
complete loss of expression of the BAF subunits SMARCA4,
ARIDIA, or SMARCCTI leads to a global decrease in chromatin
accessibility, while the loss of ARID1B expression is associated
with the opposite effect [12]. This is important from a transla-
tional point of view, as different BAF mutational profiles thus
have distinct contributions to cancer pathogenesis, resistance to
therapy, and prognosis [2]. Reflecting this, a growing body of
work is emerging to address the multifaceted impact of these
genetic alterations in cancer prognosis.

Over the last decade, the validation of predictive biomarkers
has played a critical role in allowing precise treatment selec-
tion for patients with NSCLC; clinical outcomes have markedly
improved as a consequence. However, the existing biomarkers
are imperfect, outcomes still vary widely, and the identification
of additional predictive biomarkers remains an unmet need.
Prominent among these potential new biomarkers are BAF
complex mutations. Approximately 25% of NSCLC cases har-
bor at least one such mutation [13] and multiple studies have
attempted to address their prognostic implications, sometimes
with conflicting results. Not surprisingly, these studies report
that prognosis is markedly influenced not only by which subunit
is mutated but also by other critical factors including their inter-
action with other BAF mutations and/or with other oncogenes,
differences in zygosity, and class of anticancer therapy. Here we
summarize our current understanding regarding the impact of
BAF mutations on the prognosis of patients with NSCLC.

2 | BAF Complex Mutations

Large genomic studies have documented mutations in all sub-
units of the BAF complex. However, the bulk of these alter-
ations are in genes encoding SMARCA4, ARID1A, ARID2, and
PBRM1, with most localizing to subunit-subunit interfaces, sug-
gesting altered assembly and/or composition of BAF complexes
[1]. Supporting a central role of these genes in tumorigenesis,
mice genetically engineered to express inactivated Smarca4,
Aridla, Smarcbl, or Pbrm1 alleles are prone to cancer [1]. The
type and frequency of BAF complex mutations in humans
varies substantially depending on tumor type, which suggests
context-dependent functions for specific mutated BAF sub-
units [3, 10]. Commonly, mutations in genes encoding subunits
of the BAF complex result in complete loss of function (LoF).
These mutations, referred to as class 1 [14], typically involve
nonsense mutations, frameshift mutations, or large deletions.
When tumor suppressor genes like SMARCA4, SMARCBI, or

ARIDIA undergo class 1 mutations, the resulting LoF renders
the protein unable to regulate transcription, chromatin remod-
eling, cell cycle progression, and apoptosis [14], contributing to
tumorigenesis. BAF subunit haploinsufficiency or complete loss
thus results in the loss of a key mechanism of tumor suppression
[10], and such alterations have been associated with worse prog-
nosis across a wide range of human cancers [15]. A second set
of BAF mutations, referred to as class 2 [14], includes missense
and splicing mutations, which result in hypomorphic alleles and
partial LoF. These types of alterations undermine the tumor
suppressive function of the resulting protein to varying degrees.

In NSCLC, genetic alterations involving at least one subunit of
the BAF complex have been reported in approximately 20% of
patients, making them some of the most common mutations
in lung cancer [16, 17]. The most frequently mutated BAF sub-
units in NSCLC are SMARCA4, ARID1A, SMARCA2, ARID1B,
ARID2, PBRMI, and SMARCBI [17]. Several BAF complex-
directed therapies are currently undergoing clinical testing and
some have already demonstrated clinical activity in NSCLC
(Table 1).

3 | Prognostic Relevance of SMARCA4 Mutations

SMARCAA4 is one of the core catalytic subunits of the BAF com-
plex; SMARCAZ? is its paralogous counterpart. Large genomic
studies have identified SMARCA4 mutations in approximately
4% of all cancers, with NSCLC, cancer of unknown primary, and
endometrial, breast, and colon cancer having the highest prev-
alence [19]. Over half of the SMARCA4 mutations in human
cancer samples are missense mutations that tend to cluster in
the catalytic domain, at subunit-subunit interaction interfaces,
and at nucleosome binding sites [1, 7]. The dysregulation of
SMARCAA4 results in altered transcriptional programs that in-
crease expression of genes that foster malignant proliferation
[20-22], as evidenced by nonclinical studies demonstrating that
SMARCA4 inactivation promotes the formation of aggressive
and invasive tumors [23, 24]. In NSCLC, SMARCA4 alterations
occur in approximately 10% of cases and have been reported in
multiple studies as being among the most prognostically delete-
rious genomic alterations [14, 16, 19, 25] (Table 2).

SMARCA4 mutations are mutually exclusive with genomic al-
terations in other BAF genes profiled in the FoundationOne
panel (ARIDIA/B, ARID2, PBRMI1, SMARCBI, SMARCDI), as
well as with mutations in genes encoding prevalent targetable
oncogenes, including EGFR, ALK, ROS1, MET, and RET (ge-
nomic profiling by Foundation Medicine Inc. [FMI]) [14, 16, 19].
A large proportion of SMARCA4 gene alterations in NSCLC are
homozygous, with over 40% of cases representing truncating
mutations (class 1), suggesting LoF [19]. This is likely due to
high rates of loss of heterozygosity (LOH) resulting in concom-
itant KEAPI and STK11 genomic alterations, as all three genes
are located in close proximity at chromosome 19pl13.2-13.3
[14, 19]. The clinical relevance of this finding was illustrated in
an analysis of a large database of 2462 patients treated in the
Flatiron Health network who underwent routine comprehensive
sequencing by FoundationOne or FoundationOne CDx. Patients
with advanced (stage 3B or IV) NSCLC harboring homozy-
gous truncating SMARCA4 mutations had significantly worse
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median overall survival (mOS) compared to their wild-type
counterparts (7.9 vs. 16.3months, hazard ratio [HR] 1.85) [19].
Similar results were observed among patients with homozygous
mutations receiving immune checkpoint inhibitor (ICI) therapy
(mOS 9.9 vs. 19.5months, HR 1.62) [19]. However, a negative
impact on survival was not observed among patients with het-
erozygous SMARCA4 alterations [19]. Collectively, these data
indicate that patients with advanced NSCLC harboring homozy-
gous SMARCA4 class 1 mutations represent a high-risk patient
population characterized by short overall survival, very low fre-
quency of targetable mutations, and subpar outcomes following
response to standard of care therapy with chemotherapeutic
regimens or ICL.

Similar results were reported in an analysis of 4813 cases of
advanced NSCLC treated at Memorial Sloan Kettering Cancer
Center (MSKCC) who underwent genomic analysis by MSK-
IMPACT next-generation sequencing (NGS). Multivariable
analysis showed that SMARCA4 mutations were associated
with significantly worse OS (n=1288) [14]. Class 1 mutations
were associated with the shortest OS (p <0.001 vs. class 2 or
wild-type) [14]. Interestingly, patients with SMARCA4-mutant
tumors who received ICI therapy (n =87) had better outcomes
than those who did not (n=205; HR for OS 0.67; 95% CI,
0.48-0.92; p=0.01), particularly those with class 1 mutations
(p value for overall response rate 0.027; n =445) [14]. However,
among patients who received ICI therapy, there was no dif-
ference in progression-free survival (PFS) (p=0.74) or OS
(p=0.35) based on whether SMARCA4 was mutated or wild-
type (Table 1). SMARCA4 alterations were more frequently
observed with KRAS, STK11, and KEAPI mutations compared
with SMARCA4 wild-type counterparts [14].

Investigators at the Dana Farber Cancer Institute (DFCI)
reported the outcomes of 1490 patients with metastatic
NSCLC whose tumors were genetically profiled by targeted
NGS focusing on the six BAF genes most often altered in
NSCLC (SMARCA4, ARIDIA, ARIDIB, ARID2, PBRM1, and
SMARCBI) [16]. BAF-mutated NSCLC cases were more fre-
quently associated with male sex, greater tobacco use, a higher
tumor mutational burden (TMB), a higher proportion of ad-
vanced disease at diagnosis, and a lower proportion of targe-
table driver mutations compared to wild-type cases [16, 31].
Compared with BAF wild-type NSCLC, patients with BAF-
mutated NSCLC (n=335) had a significantly shorter median
OS from the time of advanced disease diagnosis (19.3 vs. 25
mos; HR 0.82; 95% confidence interval [CI] 0.71-0.96; p=0.01),
which was driven mainly by SMARCA4-mutated cases
(25months vs. 15.6 months for SMARCA4 wild-type and mu-
tated, respectively) [16]. Interestingly, among patients treated
with ICI, no differences in clinical outcomes were observed be-
tween those with wild-type and those with mutated SMARCA4
alleles, with the exception of those with concurrent KRAS
mutations (n = 176), where a SMARCA4 mutation (n=17) con-
ferred a significantly lower overall response rate (ORR) (0% vs.
22%; p=0.03), shorter median PFS (1.4 vs. 4.1 mos; HR 0.25;
95% C10.14-0.42; p<0.001), and shorter mOS (3.0 vs. 15.1 mos;
HR 0.29; 95% CI 0.17-0.50; p <0.001) [16].

Mechanistically, mutated SMARCA4-induced resistance to ICI
has been linked to markedly decreased tumor infiltration of

dendritic cells and CD4* T cells and downregulation of STING,
IL1B, and inflammatory cytokines required for efficient recruit-
ment and activity of immune cells, secondary to loss of chroma-
tin accessibility at enhancers of genes responsible for the innate
immune response [32].

4 | Genomic Context of SMARCA4 Alterations in
NSCLC

A key modulator of the prognostic impact of SMARCA4 alter-
ations in NSCLC outcomes is the presence of other genomic al-
terations. While SMARCA4 mutations are rarely identified in
the presence of other BAF mutations or most targetable driver
oncogenes [14, 16, 19], other alterations have been reported as
highly prevalent in SMARCA4-deficient NSCLC. In a study of
407 NSCLC cases harboring SMARCA4 alterations, TP53 (56%),
KEAPI (41%), STK11 (39%), and KRAS (36%) were frequently
comutated [14]. STK11, KEAPI, and SMARCA4 are tumor sup-
pressors in lung tissue and mutations in those genes correlate
with significantly worse outcomes for patients with NSCLC,
particularly after ICI therapy [14, 16, 26, 27, 33-34]. Given
their tumor suppressive activities and the fact that all three co-
locate at chromosome 19p13.2-13.3, these genes are frequently
found co-deleted in NSCLC [16, 26, 33-34]. Deletions of STK11,
KEAPI, and SMARCA4 alleles (most frequently monoallelic)
were observed in 14.7%, 13.5%, and 13.7%, respectively among
3194 patients (2777 for KEAPI analysis) with non-squamous
NSCLC treated at MSKCC and DFCI [26]. The impact of haplo-
insufficiency of these genes on clinical outcomes was similar to
that of mutations in these genes, and resulted in lower ORR and
shorter PFS and OS among patients treated with chemotherapy
or chemoimmunotherapy, independently of TMB or PD-L1 ex-
pression [26]. In patients treated with ICI therapy alone, these
deletions resulted in worse outcomes in the DFCI cohort among
KRAS-mutated cases, but had no effect among patients treated
at MSKCC [26]. The reasons for this difference are unknown,
but are likely related to differences in diagnostic assays, the
heterogeneity of the treated populations, and the retrospective
nature of these studies.

Alarge analysis of the impact of genomic and clinical features
on the outcomes of 424 patients with KRAS-mutated NSCLC
identified comutations in the tumor suppressors SMARCA4,
KEAPI, and CDKN2A as the most important independent
determinants of inferior clinical outcomes with KRAS G12C
inhibitor monotherapy (sotorasib or adagrasib) [28]. When an-
alyzed individually, co-mutations at the SMARCA4, KEAPI,
or CDKN2A loci correlated with markedly shorter PFS and OS
after treatment with sotorasib or adagrasib, and this deleterious
effect was related to the number of comutations. Alterations at
any of these three tumor suppressors identified approximately
50% of the patients with KRAS-mutated NSCLC who experi-
enced disease progression within 3 months from initiation of
therapy [28]. It must be noted, however, that their impact as
predictive markers of response was much less consistent [28].
It is also worth noting that patients with KRAS/SMARCA4-
comutated NSCLC have been shown to have a worse prognosis
than those with only SMARCA4—and not KRAS—alterations
[35]. While compelling, these results should be interpreted
with caution as they are from retrospective uncontrolled
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studies. Ricciuti et al., partially addressed this issue by an-
alyzing the genomes of 82 patients with NSCLC before ICI
therapy and at the time of resistance to identify genomic le-
sions differentially acquired by tumors exposed to ICI [36]. At
the time of acquired resistance, recurrent genomic changes
(mutations and/or heterozygous loss) were observed in 62% of
samples, and were coupled with decreased tumor-infiltrating
lymphocytes (TILs) and HLA class I expression in tumor biop-
sies (n=38-16) [36]. The B2M, SMARCA4, STK11, and KEAPI
loci were among the most frequently altered [36]. Control bi-
opsies, from 138 patients treated with chemotherapy or tar-
geted therapy as controls, did not exhibit these genomic and
immunophenotypic changes [36]. These findings suggest that
specific genomic lesions such as SMARCA4 mutations are se-
lected for during ICI therapy and likely play a key role in the
development of ICI resistance. Incorporation of these findings
may help refine prognostic tools so that they can more reli-
ably stratify patients with NSCLC and maximize treatment
outcomes.

5 | Prognostic Relevance of ARID1A Mutations in
NSCLC

ARIDI1A (AT-interacting domain-rich protein 1A) is the BAF
subunit most frequently mutated in cancer and is a bona fide
tumor suppressor [10]. ARIDIA functions as a tumor suppres-
sor gene in lung tissue and is mutated in approximately 8%-10%
of patients with NSCLC, mainly as LoF alterations frequently
associated with the loss of protein expression [13, 16, 37-38].
Complete loss of or decreased ARID1A protein expression has
been found to be significantly associated with LoF mutations and
evidence of biallelic inactivation [38]. ARID1A recruits the BAF
complex to target sequences via protein-DNA or protein—pro-
tein interactions [39]. ARID1A and its paralog ARID1B occupy
the same position within the BAF complex and can functionally
compensate for each other, which makes ARID1B essential to
cancer cells following ARID1A mutation [40]. Downregulation
of ARIDIA has generally been reported to be an independent
prognostic factor for shorter cancer-specific survival in NSCLC
[38, 41-42] (Table 3).

Unlike SMARCA4, ARIDIA is frequently comutated with
EGFR, with the latter being mutated in 9% to 22% of NSCLC
cases harboring ARIDIA mutations [38, 45]. Importantly,
ARIDIA alterations have been associated with shorter PFS
among patients with tyrosine kinase inhibitor (TKI)-sensitive
EGFR-mutated NSCLC treated with first-generation EGFR
inhibitors [43]. A similar negative impact was observed in pa-
tients with EGFR-mutated NSCLC treated with osimertinib
or second-generation EGFR inhibitors, in which ARIDIA mu-
tations were observed more frequently in tumors with TP53
alterations [46]. Several mechanisms have been implicated
in this insensitivity of ARIDIA/EGFR-comutated NSCLC to
EGFR inhibitors, including the activation of compensatory
signaling pathways (e.g., PI3K/Akt, JAK/STAT, and NF-xB)
and the promotion of epithelial to mesenchymal transition
(EMT) and angiogenesis [47].

A large analysis of 29,757 FoundationCORE NSCLC samples
found that ARIDIA and EGFR were frequently comutated at

diagnosis [37], indicating that ARID1A function is not criti-
cal for the survival of EGFR-mutated NSCLC cells, and that
ARIDIA alterations may result in drug-tolerant persister
(DTP) phenotypes [48], which allow some NSCLC cells to
survive EGFR TKI therapy, leading to clinical resistance. In
EGFR-mutated NSCLC cell lines, shRNA-mediated knock-
down of ARIDIA promoted cell cycle activation, ErbB path-
way activation, VEGF pathway activation, and expression of
epithelial-mesenchymal transformation (EMT) genes [43].
These findings suggest a multifactorial process through which
ARID1A mutations increase tumor proliferation and metasta-
sis, and decrease the sensitivity of ARID1IA/EGFR-comutated
NSCLC to EGFR TKI therapy.

Outside of the EGFR comutation context, the opposite has been
observed, with several studies reporting an association between
ARIDIA alterations and longer PFS and OS following treat-
ment with ICI, not just in NSCLC but across a range of cancers
[13, 44, 49]. Recent studies have shed light on this phenomenon.
In a proteomic screen, ARID1A was shown to interact with
mismatch repair (MMR) protein MSH2, which may explain its
tumor suppressive role, as loss of ARID1A expression compro-
mises MMR and increases mutagenesis and microsatellite insta-
bility. Increased mutagenesis results in a higher neoantigen load
and TILs, making MMR-deficient tumors more sensitive to ICI
therapy [50, 51]. ARIDI1A-deficient tumors are associated with
high TMB and a more favorable prognosis in response to immu-
notherapy across multiple human cancers [13, 52]. In keeping
with these findings, ARID1A expression has been found to be
negatively correlated with TILs and PD-L1 expression scores,
used to predict the efficacy of treatment with ICIs [52], again
linking loss of ARID1A function with increased sensitivity to
ICI therapy.

A retrospective series involving 2440 consecutive patients with
NSCLC highlights the danger of interpreting genomic data in
the absence of protein expression correlates [38]. ARIDIA mu-
tations were detected in 7.5% of cases, of which 69% were LoF
mutations [38]. ARID1A protein expression was aberrant in 46%
of the 139 evaluable ARIDIA-mutated cases, with complete loss
correlating with ARIDIA premature-truncating mutations and
biallelic inactivation [38]. The concomitant presence of ARID1A
mutations and aberrant ARID1A protein expression correlated
with frequent TP53 mutations and high TMB [38]. A separate
study involving a cohort of 1013 NSCLC cases used for microar-
ray analysis found that BAF subunit (ARID1A, SMARCA4,
SMARCA2, and/or ARID1B) expression correlated with PD-L1-
positive status and high TMB [31]. While patients with ARIDIA-
mutated tumors exhibited similar OS as their wild-type
counterparts, the concomitant presence of ARIDIA mutations
and aberrant ARID1A expression correlated with shorter OS
[38], which underscores the importance of interpreting ARIDIA
sequencing data in the context of the functional consequences of
any specific mutation.

ARIDIA alterations have also been linked to MMR deficiency
and increased genomic instability. In a study that included 1540
patients and nine different tumor types, each with a prevalence
of ARIDIA alterations of at least 5%, the percentages of patients
with microsatellite instability (MSI)-high and TMB-high (>20
mutations/mb) were significantly higher in tumors harboring
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ARIDIA alterations than in those with wild-type ARIDIA (20%
vs. 0.9%; p <0.001 and 26% vs. 8.4%; p <0.001, respectively) [44].
This finding was also observed among the subset of 364 patients
with NSCLC (5.9% vs. 0.4%; p=0.01 [n=267] and 26% vs. 8.6%;
p=0.03 [n=345], respectively) [44]. ARID1A alterations were in-
dependently and significantly associated with longer PFS after
ICI therapy across all histologies, including NSCLC, regardless
of TMB and microsatellite status [44]. However, it must be noted
that, while OS trended towards improvement among patients
with ARID1A mutated tumors (vs. wild-type), the difference was
not statistically significant [44].

Overall, these data suggest that the presence of ARIDIA alter-
ations may predict sensitivity to ICI therapy across multiple
tumor types. These observations merit the prospective valida-
tion of ARIDIA alterations as a predictive and prognostic bio-
marker in patients with NSCLC, which could be helpful in
refining patient stratification algorithms, along with more es-
tablished markers such as PD-L1 expression levels or TMB.

6 | Prognostic Relevance of Mutations of Other
BAF Subunits in NSCLC

Of the genomic alterations involving alleles encoding BAF
subunits, those occurring at the SMARCA4 and ARIDIA loci
have been the most thoroughly investigated in human cancer.
Relatively little is known about the prognostic impact of genomic
alterations of other BAF subunits in NSCLC. However, multiple
subunits within the BAF complex have been described as having
tumor suppressive activity and, not surprisingly, alleles harboring
inactivating mutations have been reported across the spectrum of
human cancer. For instance, PBRM1, ARID2, and BRD7, which
encode subunits uniquely expressed by the pBAF complex, have
been found to be mutated in approximately 1%-8% of human
cancers [17, 53]. A genome-scale CRISPR-Cas9 screen to identify
mechanisms of tumor cell resistance to killing by cytotoxic T cells
identified the loss of over 100 genes, including PBRM1, ARID2,
and BRD7, as sensitizing events to T cell-mediated killing [54].
The pBAF complex has been shown to curtail chromatin acces-
sibility to interferon (IFN)-y-inducible genes in cancer cells, thus
promoting resistance to T cell-mediated cytotoxicity. It follows,
then, that PBRM1, ARID2, and BRD7 genomic alterations that
increase chromatin accessibility to IFN-responsive genes may
sensitize cancer cells to therapeutics that rely on T cell-mediated
cytotoxicity for their mechanism of action, including ICI, T cell
engagers, and chimeric antigen receptor T cells [54].

This has been borne out in patients with metastatic clear cell
renal cell carcinoma, a malignancy characterized by low TMB,
a high frequency of PBRMI-inactivating mutations (approxi-
mately 30%-41% of patients), and improved clinical responses
to ICI therapy in the context of PBRM1 mutations [53, 55-56].
However, analyses in NSCLC have shown conflicting results. In
a recent study, PBRMI mutations were detected in 84 of 2767
(3%) NSCLC cases, of which 60% were LoF mutations [57]. In
spite of their association with higher TMB, PBRMI-mutated
tumors were linked to shorter OS among patients receiving ICI
therapy, compared to their wild-type counterparts [57]. PBRM1
mutations did not appear to have a significant prognostic im-
pact among patients with NSCLC treated with therapies other

Studies evaluating pBAF mutations in NSCLC.
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than ICI [57]. Similar conclusions were reached in a pan-cancer
analysis studying the impact of pBAF mutations on the out-
comes of 2936 patients with 11 different tumor types receiving
ICI therapy [53]. In most tumor types, PBRMI mutations, alone
or in combination with ARID2 mutations, were not significantly
associated with OS even after adjusting for TMB [53]. However,
in the NSCLC cohort, the presence of PBRM1 and/or ARID2 mu-
tations was associated with statistically significant shorter OS
after ICI therapy. Multivariable analysis showed that the pres-
ence of mutated PBRM1 alleles was an independent predictor of
worse OS in NSCLC (n=983; HR 2.91; p<0.001) after adjusting
for TMB and copy number alterations [53].

While few studies have been published regarding the impact of
ARID2 mutations in NSCLC, it is worth noting that a compos-
ite analysis of five clinical cohorts treated with ICI at MSKCC
(n=2272) showed a numerical trend towards improved PFS
(8.3 vs. 4.1 months, HR=0.79, p=0.4; n=349) and OS (36 vs.
11 months, HR=0.60, p=0.097; n=344) when comparing mu-
tated to wild-type ARID2 cases, but the differences did not reach
statistical significance [13].

In summary, while the available analyses are retrospective in
nature and hindered by the limited number of mutated cases,
the published data suggest that pBAF subunit alterations may
be negative predictive biomarkers in NSCLC treated with ICI
(Table 4).

7 | Conclusion and Future Directions

Our analysis of the subset of studies providing whole-exome se-
quencing data on large numbers of patients with NSCLC shows
that, overall, SMARCA4 mutations are generally associated
with poor prognosis regardless of therapy; ARIDIA mutations
are typically associated with better prognosis after ICI therapy;
ARDIA/EGFR-comutations are not susceptible to treatment
with EGFR TKIs; and pBAF complex mutations, especially of
PBRM1, are strongly associated with poor outcomes after ICI
therapy. However, these conclusions were not universal across
all the studies we reviewed. These discrepancies may reflect dif-
ferences in patients’ baseline characteristics, both between stud-
ies and between patients in individual studies.

To address this and allow more robust assessments of the role of
BAF genomic lesions as predictors of therapeutic outcomes in
NSCLC, several key factors will need to be considered, including
the type of mutation (type 1 vs. type 2, homozygous vs. heterozy-
gous), its functional consequences (complete, partial, or no pro-
tein expression), and the presence of comutations such as STK11
and KEAPI both within and outside (e.g., other oncogenes or
tumor suppressors) the BAF complex. In addition, PD-L1 ex-
pression, TMB, MSI status, and density of TILs should be con-
sidered. Larger, functionally annotated, sufficiently powered,
prospective clinical trials assessing uniformly treated patient
populations are needed to validate these mutations as prognos-
tic biomarkers and support their incorporation into treatment
algorithms. With clinical trials of BAF complex-directed ther-
apies currently underway, it is tempting to speculate that some
of these new therapeutics may ultimately reverse the deleterious
impact of certain BAF genetic alterations.
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