

Discovery of FHD-609, a Potent and Selective Heterobifunctional Degrader of BRD9

Cambridge Health Institute 18th Annual Drug Discovery Chemistry Meeting Matthew R. Netherton, Ph.D. (mnetherton@foghorntx.com) Senior Director, Medicinal Chemistry April 13th, 2023

- Degrader identification and strategy
- Identification of FHD-609
- Special considerations for selectivity and stability
- In vivo efficacy
- Degrader kinetics
- Early Phase I patient data

TPD to Regulate Chromatin and Gene Expression

Healthy Cells

Work together to orchestrate gene expression at the right locations

Chromatin remodeling complex + Transcription Factor Cancer Cells

Aberrations in remodeling complexes (BAF) orchestrate gene expression at the wrong locations

Normal gene expression

FCGHORN

THERAPEUTICS

- Component loss and/or improper translocation fusion incorporation
- Cancer driver mutations associated with BAF subunits often results in paralogs or alternative BAF complex dependency
- Results in chromatin dysregulation and improper gene expression

BRD9 Subunit of the Non-canonical BAF Complex is Required for Survival of Synovial Sarcoma

Synovial Sarcoma is characterized by SS18-SSX fusion oncoproteins

Compositions of cBAF, PBAF and ncBAF. Incorporation of SS18-SSX into BAF complexes in Synovial Sarcoma cells

FCGHORN

BRD9 Binder Starting Points

- Established binding modes
- Good affinity for developing degrader
- Dual BRD 7/9 affinity
- Selective over other bromodomains

Two Potential Bromodomain Exit Vectors Identified

BRD9 TR-FRET IC_{50} 8 nM BRD7 TR-FRET IC_{50} 9 nM

FCGHORN THERAPEUTICS

Developing a Chemistry Toolbox

Representative First Generation Compounds

Class	Northern urea	Southern urea	Southern DMAP	Northern thiophene
	D	E	F	G
MW / cLogD / tPSA / Rot Bonds	743 / 2.5 / 169 / 13	823 / 1.9 / 166 / 10	794 / 2.3 / 182 / 15	863 / 2.9 / 167 / 15
BRD9 / BRD7 DC ₅₀ nM (%D _{max})	4 (100) / NC (29)	0.2 (99) / NC (14)	0.8 (100) / 25 (100)	0.08 (100) / 2 (100)
pH 7.4 PBS kinetic soubility μM	266	108	25	266
Plasma stab. m/h % rem. @ 2 hrs	22 / 57	90 / 90	45 / 93	27 / 19
mouse IV PK (1 mpk) Cl /T _{1/2} (h)/ Vd _{ss}	43 / 0.3 / 0.9	11 / 5.4 / 1.3	62 / 0.6 / 2.4	82 / 1.7 / 8.9

- Sub-nanomolar selective degraders identified
- Variable plasma stability and protein binding
- Reasonable solubility and IV mouse PK achievable

FCGHORN THERAPEUTICS

Identification of FHD-609

- Selective picomolar degrader of BRD9
- Long half-life and large volume of distribution across species
- High plasma stability and low-moderate PPB
- Acceptable solubility
- Poor gut permeability \rightarrow low oral bioavailability across species

FHD-609 is a Rapid, Highly Potent BRD9 Degrader which **Utilizes CRBN Recruitment**

Binding to both BRD7 and BRD9

BRD9 Degradation by FHD-609 Is Proteosome Dependent

SYO1 cell line

Weak Binding Can Lead to Potent Degradation

- Very weak binding can lead to extremely potent and efficient degradation
- Binding assays may provide misleading data as degrader molecules grow
- Biophysical methods and cellular degradation assays may be more reliable
- Proteomics is the most reliable assay

FHD-609 Selectively Degrades BRD9 - Global Proteomics

- Data shown for SYO1 synovial sarcoma cells treated with 16nM of FHD-609 (~200x DC50) for 4h
- BRD9 is the only protein significantly degraded, with 16-fold reduction, by quantitative MS analysis. About ~9k detectable proteins
- Similar selectivity observed for 24h treatment of 16nM FHD-609, or higher concentration of 78nM (~1000x DC50) for 4h, data not shown

Dose- and Time-dependent in vivo BRD9 Degradation

SYO-1 Synovial Sarcoma CDX PKPD with racemic FHD-609 (Single dose IV administration in mouse)

FHD-609 Epimerization: in vivo and in vivo Differences

- In vitro models of epimerization may not be indicative of in vivo rate
- Apparent in vivo conversion can be affected by multiple factors such as tissue distribution, B/P partitioning, and pH

Robust in vivo Activity Observed in Synovial Sarcoma Model and BRD9 Degradation Associated with FHD-609 Weekly dosing of racemic FHD-609* achieved sustained BRD9 degradation

*Racemic FHD-609 utilized in this study

Superior Tumor Growth Inhibition of FHD-609* in a Synovial Sarcoma Model as Compared to Ifosfamide and Pazopanib

ASKA CDX Model

- Mutation: SS18-SSX1
- Superior tumor growth inhibition compared to ifosfamide and pazopanib
- Complete suppression observed over 30 days at 2 mg/kg of FHD-609

*Racemic FHD-609 utilized in this study

FHD-609: Off-target IMiD Neosubstrate Degradation Activity

1µM (5000xDC₅₀)

Kinetic degradation (24hr) profiling of

100nM (500xDC₅₀)

FCGHORN THERAPEUTICS

10nM (50xDC₅₀)

From Selective BRD9 Degradation to Robust Dual BRD7 and BRD9 Degradation

Dual BRD7 and BRD9 kinetic degradation

FHT Dual BRD7/9 PROTAC

- CRBN-based dual heterobifunctional degrader
- Rapid and potent degradation of both BRD7 and BRD9
- Enables studies of pBAF and ncBAF function

Development of Orally Bioavailable Selective Degraders

- FHD-609 first to clinic to address unmet needs of synovial sarcoma patients and actively progressing in Ph I
- Oral BRD9 program followed as potential back-up and expansion of degrader chemistry portfolio

Oral BRD9 degrader		Selective degradation and oral bioavailability		
HiBiT-BRD9	[Compund] (nM)	Proteins assessed by WB	DC ₅₀ (Dmax)	
	1000333.33	BRD9	600pM (100%)	
	111.1137.04	BRD7	(0%)	
	 12.35 4.12 1.07 	BRD4	(0%)	
	 1.37 0.46 0.15 4 0.05 0.02 DMSO 			
0.0 3 6 9 12 15 18 21 24		Oral Bioavailability		
Time (hr) Davi: 96%		Rat t _{1/2} , oral bioavailability	5.0 h, 35%	
D _{max50} : 500pM Rate λ: 7.9 hr ⁻¹		Monkey $t_{1/2}$, oral bioavailability	5.9 h, 60%	

- Several oral BRD9 degraders with high potency, selectivity, rapid degradation, and excellent oral bioavailability
- Apply these chemistry learnings and tools to additional degrader programs

FCGHORN THERAPEUTICS

FHD-609 Phase 1 Study Overview and Progress

Ph1 study continues to progress through dose escalation cohorts – MTD and RP2D(s) not yet established –

Early Analyses of On-Treatment Tumor Biopsies Shows BRD9 Degradation

- Tumor biopsies from two patients with metastatic synovial sarcoma treated with same low dose of FHD-609
- Biopsies taken either 1 day (Patient 1) or 2 days (Patient 2) following FHD-609 administration
- Uniform loss of BRD9 staining observed in both patient tumors while receiving FHD-609 treatment
- Phase 1 dose escalation study is on-going to determine Maximum Tolerated Dose (MTD) and/or appropriate dose(s) to evaluate in dose expansion phase
 FCGHORN THERAPEUTICS

Conclusion and Summary

- FHD-609 is a heterobifunctional degrader with proteosome dependent and picomolar potency for BRD9 degradation with selectivity over BRD7, BRD4 and the wider proteome
- Demonstrates picomolar growth inhibitory and colony formation effects in vitro against several synovial cell sarcoma cell lines
- Demonstrates potent degradation in vivo PKPD with dose and time dependence
- Displays potent and sustained degradation of BRD9 in SS xenograft models, with robust tumor growth inhibition that is superior to standards of care
- FHD-609 is in phase 1 clinical trials for synovial sarcoma

Acknowledgements

Thank you!

Questions?

Proprietary Information 24

OA