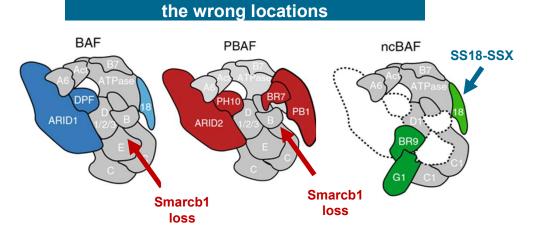


Progressing degraders towards and through the clinic

Hanson Wade's 5th Annual Targeted Protein Degradation Summit, Oct 25-28, 2022

Danette L. Daniels, Ph.D. (ddaniels@foghorntx.com) Vice President, Protein Degrader Platform

Targeted Protein Degradation to Regulate Chromatin and Gene Expression in Disease


Healthy Cells

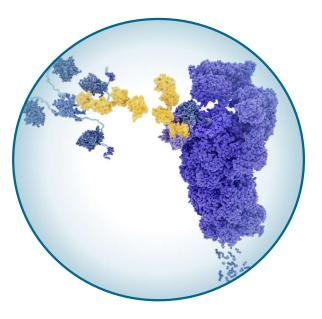
Work together to orchestrate gene expression at the right locations

Chromatin remodeling complex + Transcription Factor Aberrations in remodeling complexes (BAF) orchestrate gene expression at

Cancer Cells

Normal gene expression

FCGHORN'


Component loss and/or improper translocation fusion incorporation

- Cancer driver mutations associated with BAF subunits often results in paralogs or alternative BAF complex dependency
- Results in chromatin dysregulation and improper gene expression

2

Development of Degraders Dependent Upon Target Biology

Targeted Protein Degraders

Inhibition versus Degradation - It's all about the Biology!

- Evidence that removal of core disease drivers will halt cell growth and potential progression of the disease as shown by: siRNA CRISPR KO screens Temporal degradation via tag fusion PROTACs
- Understanding that for some targets, inhibition alone is not sufficient or shows toxicity at concentrations used
- Want to target proteins with no enzymatic activity or defined domains
- Disruption of a larger complex activity or scaffold is important

Outline

- Advancement of FHD-609, a selective BRD9 PROTAC
 - Pre-clinical validation of selectivity and degradation activity
 - Counter-screening against CRBN off-target IMiD neosubstrate panel
 - Initial Ph I pharmacodynamics (PD) data in patients with metastatic synovial sarcoma
- Expansion of Foghorn degradation platform
 - Orally bioavailable degrader chemistry capabilities
 - Degradation of other key chromatin regulators important in disease
 - Dual BRD7/9
 - Dual CBP/E300
 - Selective CBP and cell proliferation studies

BRD9 Subunit of the Non-canonical BAF Complex is Required for Survival of Synovial Sarcoma Cells

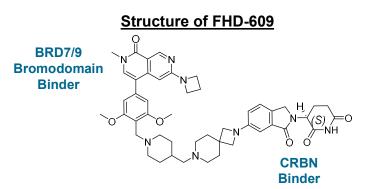
-2.0

-2.5

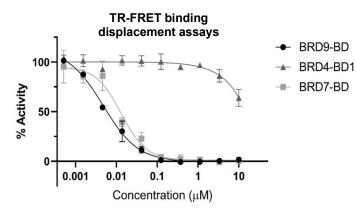
Synovial Sarcoma Cell Line

Other Soft Tissue Sarcoma Cell Line

>95% of synovial sarcoma tumors contain SS18-SSX fusions


Synovial Sarcoma is characterized by

SS18-SSX fusion oncoproteins chr18 chrX SSX SSX SS18 SS18 **SS18** SSX COOH NH 379aa 7822 A 8aa **Perturbed BAF functions Synovial Sarcoma** FCGHORN THERAPEUTICS


Compositions of cBAF, PBAF and ncBAF. Incorporation of SS18-SSX into BAF complexes in Synovial Sarcoma cells **PBAF** cBAF ncBAF SS18-SSX **SS18-SSX** ARID1 ARID2 Target of FHD-609 BRD9 is required for the survival of Synovial Sarcoma cells BRD9 profile from Project Drive shRNA screen dataset 1.0 0.5 0.0 **BRD9 Debendeuc** -0.5 **-1**.0 **-1**.5 Dependency Treshold of -1

Cell Line

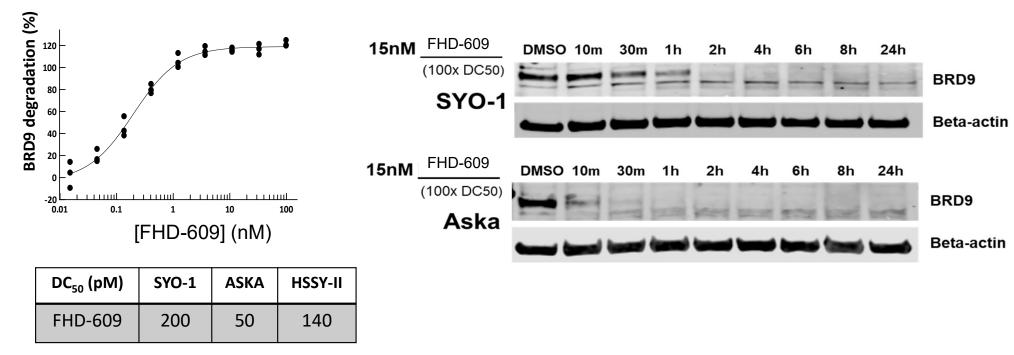
FHD-609 is a Rapid, Highly Potent BRD9 Degrader which Utilizes CRBN Recruitment

Binding to both BRD7 and BRD9

Generative of Except degradation

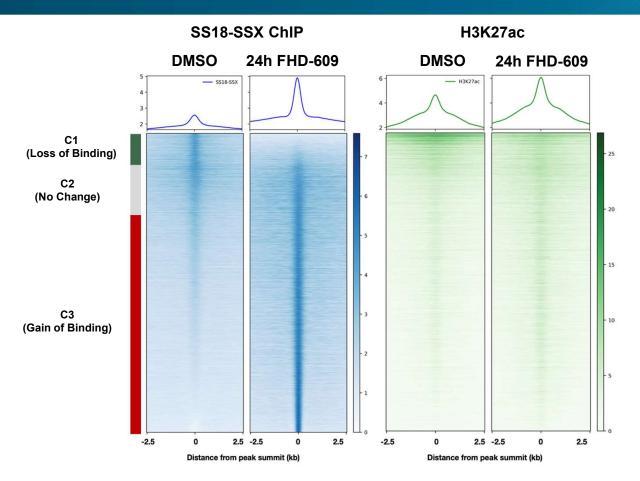
FHD-609 (nM)
0
0.1
0.4
1.2
3.7
11.1
33
100

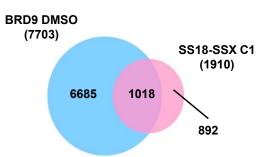
BRD9
BRD7
BRD4
BR04
<td



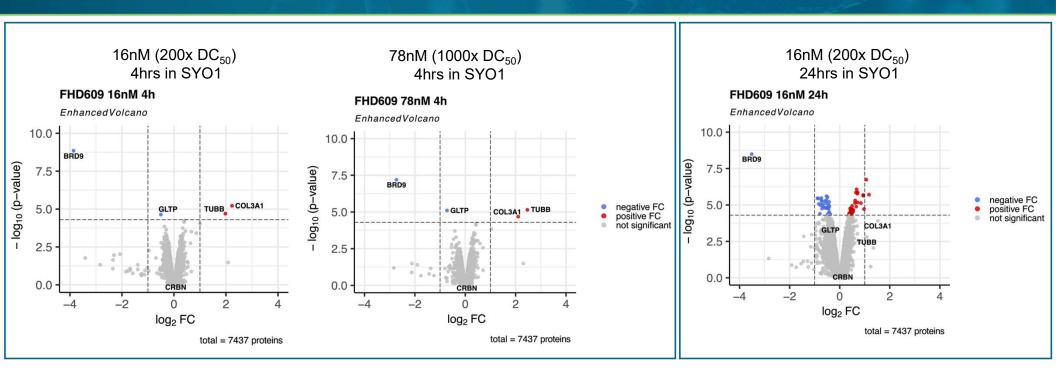
Selectivity of BRD9 degradation

6


FHD-609 shows Potent and Rapid BRD9 Degradation in Relevant Synovial Sarcoma Lines


BRD9 MSD assay (endogenous)

FHD-609 Treatment results in Global Genomic Redistribution of Synovial Sarcoma Hallmark Fusion Gene SS18-SSX in SYO-1



- Genomic regions that lose SS18-SSX peaks with FHD-609 treatment are enriched with active transcription mark H3K27ac and BRD9
- How SS18-SSX redistribution contributes to anti-proliferative activity of FHD-609 in SYO-1 is currently underinvestigation

FHD-609 Selectively Degrades BRD9 in Synovial Sarcoma Global Proteomics Analyses

- BRD9 is the only protein significantly degraded at multiple concentrations and time points
- BRD9 shows a 16-fold reduction by quantitative MS analysis.

FHD-609 Does Not Show Off-target IMiD Neosubstrate Degradation Activity

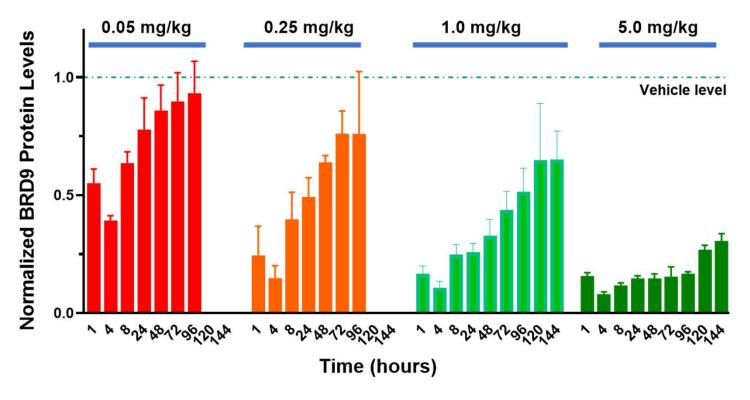
Kinetic degradation (24hr) profiling of

100nM (500xDC₅₀)

profiling of IKZF3 and SALL4 with FHD-609 GSPT1, CK1a, IKZF1, and IKZF2 with FHD-609 HiBiT-IKZF3 HiBiT-IKZF3 CRISPR MM.1S CRISPR MM.1S HiBiT-GSPT1 CSNK1A1-HiBiT **CRISPR HEK293** CRISPR HEK293 6hrs 24hrs 1.5-1.5-Fractional Luminescence (RLU) Luminescence (RLU) 1.5 Fractional Luminescence (RLU) 1.5l Luminescence (RLU) 1uM 1uM 1.0 100nM 1. 100nM • 10nM • 10nM DMSO Fractional 0.5 0.5-DMSO Fractional 0.5 0.5 0.0 0.0-0.0 0.0 DMSO 10nM 100nM 1uM 15 18 21 24 DMSO 10nM 100nM 1uM 0 3 6 9 12 18 21 24 0 6 9 12 15 [Compound] Time (hr) [Compound] Time (hr) IKZF1-HiBiT SALL4-HiBiT SALL4-HiBiT HiBiT-IKZF2 **CRISPR** Jurkat CRISPR SK-N-DZ CRISPR SK-N-DZ **CRISPR** Jurkat 6hrs 24hrs 1.5 1.5 Luminescence Il Luminescence (RLU) 1.5-1.5-Fractional Luminescence (RLU) cence 1uM 1uM Luminesc (RLU) 100nM 100nM 1.0 1 (RLU) 10nM 10nM DMSO DMSO Fractional 0.5 Fractional Fractional 0 ٥ 0.5 0.0 0.0 0 ٥ 15 18 21 24 0 3 6 9 12 DMSO 10nM 100nM 1uM DMSO 10nM 100nM 1uM 0 9 12 15 18 21 24 3 6 Time (hr) [Compound] [Compound] Time (hr)

1µM (5000xDC₅₀)

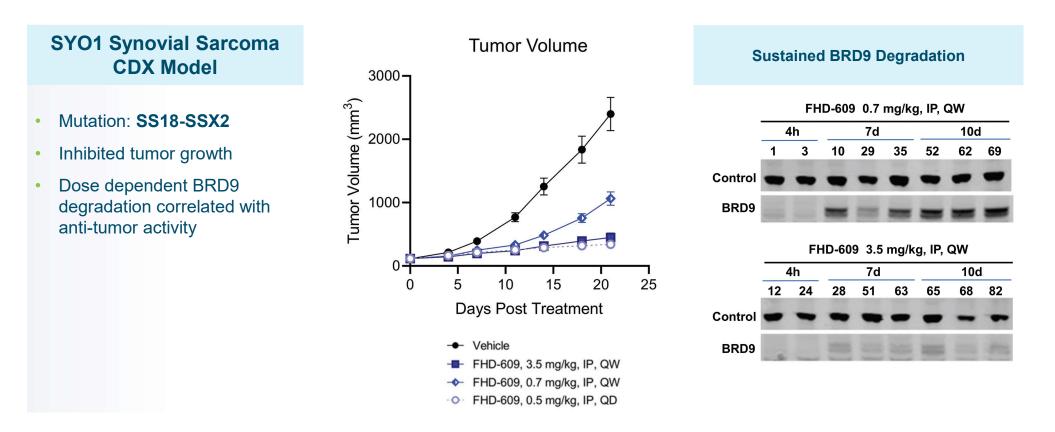
Proprietary Information

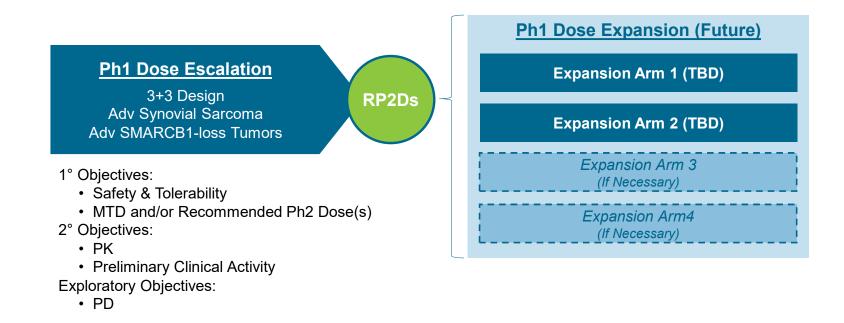

Endpoint degradation (6hr and 24hr)

FCGHORN THERAPEUTICS

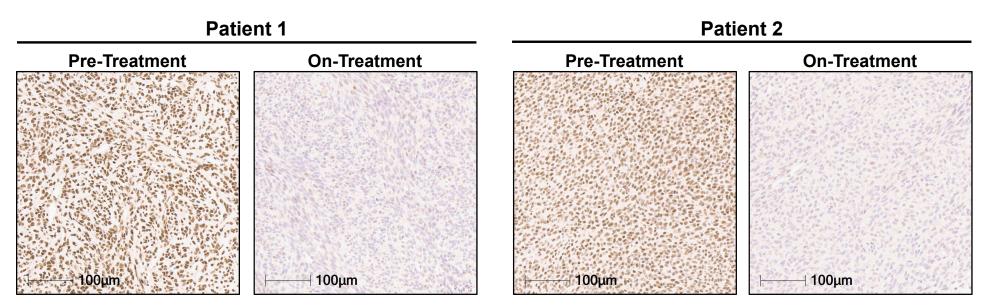
10nM (50xDC₅₀)

FHD-609 Demonstrates Dose- and Time-dependent in vivo BRD9 Degradation


SYO-1 Synovial Sarcoma CDX PKPD with racemic FHD-609 (Single dose IV administration)


Robust *in vivo* Activity Observed in Synovial Sarcoma Model and BRD9 Degradation Associated with FHD-609* Treatment

Weekly dosing of racemic FHD-609* achieved sustained BRD9 degradation


FHD-609 Phase 1 Study Overview and Progress

Ph1 study continues to progress through dose escalation cohorts – MTD and RP2D(s) not yet established –

Early Analyses of On-Treatment Tumor Biopsies Shows BRD9 Degradation

- Tumor biopsies from two patients with metastatic synovial sarcoma treated with same low dose of FHD-609
- Biopsies taken either 1 day (Patient 1) or 2 days (Patient 2) following FHD-609 administration
- Uniform loss of BRD9 staining observed in both patient tumors while receiving FHD-609 treatment
- Phase 1 dose escalation study is on-going to determine Maximum Tolerated Dose (MTD) and/or appropriate dose(s) to evaluate in dose expansion phase

Outline

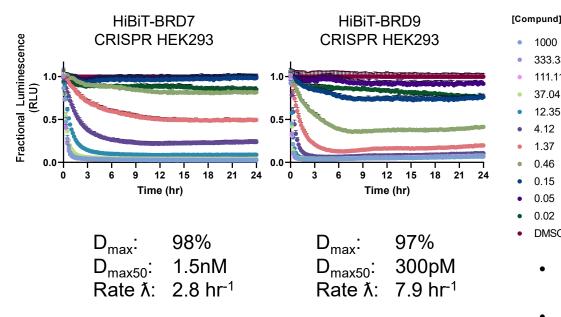
- Advancement of FHD-609, a selective BRD9 PROTAC
 - Pre-clinical validation of selectivity and degradation activity
 - Counter-screening against CRBN off-target IMiD neosubstrate panel
 - Initial Ph I pharmacodynamics (PD) data in patients with metastatic synovial sarcoma
- Expansion of Foghorn degradation platform
 - Orally bioavailable chemistry degrader capabilities
 - Degradation of other key chromatin regulators important in disease
 - Dual BRD7/9
 - Dual CBP/E300
 - Selective CBP and cell proliferation studies

Development of Orally Bioavailable Selective Degraders

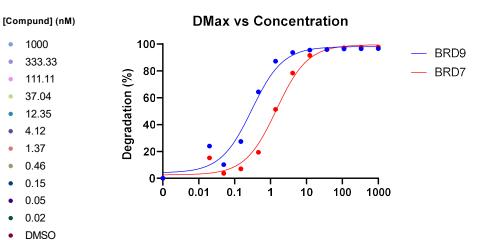
- FHD-609 first to clinic to address unmet needs of synovial sarcoma patients and actively progressing in Ph I
- Oral BRD9 program followed as potential back-up and expansion of degrader chemistry portfolio

Oral BRD9 degrader		Selective degradation and oral bioavailability	
HiBiT-BRD9	[Compund] (nM)	Proteins assessed by WB	DC ₅₀ (Dmax)
CRISPR HEK293 • 1000 • 333.33 • 111.11 • 37.04 • 12.35 • 4.12 • 1.37 • 0.46	• 333.33	BRD9	600pM (100%)
	• 37.04	BRD7	(0%)
	• 4.12 • 1.37 • 0.46 • 0.15	BRD4	(0%)
		Oral Bioavailability	
Time (hr) 0.02 D _{max} : 96% DMSO D _{max50} : 500pM Rate λ: 7.9 hr ⁻¹	Rat $t_{1/2}$, oral bioavailability	5.0 h, 35%	
		Monkey t _{1/2} , oral bioavailability	5.9 h, 60%

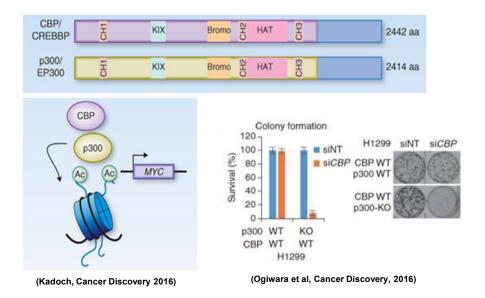
- Several oral BRD9 degraders with high potency, selectivity, rapid degradation, and excellent oral bioavailability
- Apply these chemistry learnings and tools to additional degrader programs



From Selective BRD9 Degradation to Robust Dual BRD7 and BRD9 Degradation


37.04

0.02


FHT Dual BRD7/9 PROTAC

- CRBN-based dual heterobifunctional degrader •
- Rapid and potent degradation of both BRD7 and BRD9 •
- Enables studies of pBAF and ncBAF function ٠

Targeting CBP (CREB Binding Protein) and EP300 for Degradation

CBP and EP300

- Chromatin regulators and histone acetyltransferases
- Highly homologous with similar domain structure
- Synthetic lethal relationship between CBP and EP300

FCGHORN THERAPEUTICS

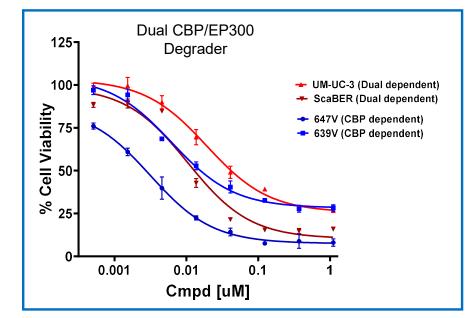
Disease implications and indications

- CBP and EP300 frequently mutated in cancers
- Numerous oncology indications showing CBP or EP300 deficiency
 - Gastric Colorectal Breast Lung

Drug targeting

- Several domains within CBP/EP300 with known binders
- Binders or inhibitors are not selective for CBP or EP300

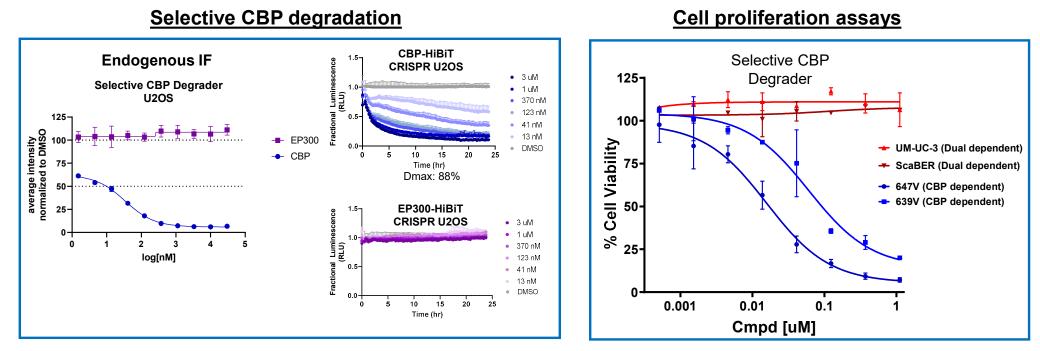
Challenge: Engineer selectivity with a degrader


Initial Development of Dual CBP/EP300 Degraders

Endogenous IF CBP-HiBiT 1.5-Fractional Luminescence (RLU) **CRISPR U2OS** 1 uM Dual CBP/EP300 Degrader 1.0 370 nM U2OS 123 nM 41 nM 0.5 100 13 nM average intensity normalized to DMSO 4 nM FP300 75-0.0-DMSO CBP 10 15 20 Time (hr) Dmax: 89% 50-25 1.5-EP300-HiBiT I Luminescence (RLU) **CRISPR U2OS** 0 1 uM 10 0 1 2 370 nM log[nM] 123 nM Fractional • 41 nM 0.5 13 nM 4 nM 0.0 DMSO 10 15 20 Time (hr) Dmax: 95%

Dual CBP and EP300 degradation

• Efficient and complete degradation of EP300 and CBP with dual degrader


Cell proliferation assays

 Robust impact on cell proliferation in both dual (CBP and EP300) dependent or CBP dependent bladder cancer cell lines

Advancement of Highly Selective Degraders for CBP

- Robust loss of cell viability only in CBP-dependent cell lines while sparing the dual dependent ones
- Selective CBP degradation translating to selective CBP-dependent cell killing

Summary

FHD-609

- Synovial sarcoma is a rare, often aggressive soft tissue malignancy with limited therapeutic options and most common among adolescents and young adults
- FHD-609 is a CRBN-based PROTAC with pM potency, exquisite selectivity, and does not show off-target CRBN neosubstrate activity
- FHD-609 is in a phase 1 clinical trial for synovial sarcoma Initial PD shows uniform and rapid loss of BRD9 in on-treatment metastatic synovial sarcoma biopsies FHD-609 is a monotherapy and administered intravenously

Foghorn Degradation Platform

- Chemistry capabilities to develop both parenteral and orally bioavailable heterobifunctional degraders
- · Regulate specificity of degradation within our target degrader series to introduce selectivity when required
- Achieving CBP selective degradation is a promising advancement towards treatment of CBP-dependent cancers

FCGHORN

Acknowledgements

Thank you!

Questions?

